Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From pts to Unprecedented Ijh
Whether or not the topology of three-dimensional covalent organic frameworks (3D COFs) can be tuned via steric control remains a big question and has never been reported. Herein, we describe the designed synthesis of two highly crystalline 3D COFs (3D-TPB-COF-OMe and 3D-TPB-COF-Ph), through the poly...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-05, Vol.143 (19), p.7279-7284 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whether or not the topology of three-dimensional covalent organic frameworks (3D COFs) can be tuned via steric control remains a big question and has never been reported. Herein, we describe the designed synthesis of two highly crystalline 3D COFs (3D-TPB-COF-OMe and 3D-TPB-COF-Ph), through the polycondensation of tetra(p-aminophenyl)methane and methoxy-or phenyl- substituted 1,2,4,5-tetralcis(4-formylphenyobenzene on the 3- and 6-positions. Amazingly, by using the continuous rotation electron diffraction technique, 3D-TPB-COF-OMe is determined to have a 5-fold interpenetrated structure with a reported pts net, while 3D-TPB-COF-Ph adopts an unprecedented self-penetrated Ijh topology (Ijh = Luojia Hill) that does not exist in the database of ToposPro. Therefore, by altering the substituents from methoxy to phenyl groups, the topology of designed 3D COFs changes accordingly, and a rare net is now available. This result clearly demonstrates that such COF structures need to be carefully determined due to its complexity, and moreover, it is promising to design 3D COFs with new topology for interesting application by increasing the steric hindrance of molecular building blocks. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.1c03042 |