Ultrafast Triggering of Insulator–Metal Transition in Two-Dimensional VSe2

The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-03, Vol.21 (5), p.1968-1975
Hauptverfasser: Biswas, Deepnarayan, Jones, Alfred J. H, Majchrzak, Paulina, Choi, Byoung Ki, Lee, Tsung-Han, Volckaert, Klara, Feng, Jiagui, Marković, Igor, Andreatta, Federico, Kang, Chang-Jong, Kim, Hyuk Jin, Lee, In Hak, Jozwiak, Chris, Rotenberg, Eli, Bostwick, Aaron, Sanders, Charlotte E, Zhang, Yu, Karras, Gabriel, Chapman, Richard T, Wyatt, Adam S, Springate, Emma, Miwa, Jill A, Hofmann, Philip, King, Phil D. C, Chang, Young Jun, Lanatà, Nicola, Ulstrup, Søren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump–probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron–lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.0c04409