Monodromy of rational curves on toric surfaces

For an ample line bundle L on a complete toric surface X, we consider the subset VL⊂|L| of irreducible, nodal, rational curves contained in the smooth locus of X. We study the monodromy map from the fundamental group of VL to the permutation group on the set of nodes of a reference curve C∈VL. We id...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2020-12, Vol.13 (4), p.1658-1681
1. Verfasser: Lang, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an ample line bundle L on a complete toric surface X, we consider the subset VL⊂|L| of irreducible, nodal, rational curves contained in the smooth locus of X. We study the monodromy map from the fundamental group of VL to the permutation group on the set of nodes of a reference curve C∈VL. We identify a certain obstruction map ΨX defined on the set of nodes of C and show that the image of the monodromy is exactly the group of deck transformations of ΨX, provided that L is sufficiently big (in the sense we make precise below). Along the way, we construct a handy tool to compute the image of the monodromy for any pair (X,L). Eventually, we present a family of pairs (X,L) with small L and for which the image of the monodromy is strictly smaller than expected.
ISSN:1753-8416
1753-8424
1753-8424
DOI:10.1112/topo.12171