A class of multiparameter oscillatory singular integral operators: endpoint Hardy space bounds

We establish endpoint bounds on a Hardy space $H^1$ for a natural class of multiparameter singular integral operators which do not decay away from the support of rectangular atoms. Hence the usual argument via a Journé-type covering lemma to deduce bounds on product $H^1$ is not valid. We consider t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2020-01, Vol.36 (2), p.611-639
Hauptverfasser: Bakas, Odysseas, Latorre, Eric, Rincón M, Diana, Wright, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish endpoint bounds on a Hardy space $H^1$ for a natural class of multiparameter singular integral operators which do not decay away from the support of rectangular atoms. Hence the usual argument via a Journé-type covering lemma to deduce bounds on product $H^1$ is not valid. We consider the class of multiparameter oscillatory singular integral operators given by convolution with the classical multiple Hilbert transform kernel modulated by a general polynomial oscillation. Various characterisations are known which give $L^2$ (or more generally $L^p$, $1 < p < \infty$) bounds. Here we initiate an investigation of endpoint bounds on the rectangular Hardy space $H^1$ in two dimensions; we give a characterisation when bounds hold which are uniform over a given subspace of polynomials and somewhat surprisingly, we discover that the Hardy space and $L^p$ theories for these operators are very different.
ISSN:0213-2230
2235-0616
2235-0616
DOI:10.4171/rmi/1144