A class of multiparameter oscillatory singular integral operators: endpoint Hardy space bounds
We establish endpoint bounds on a Hardy space $H^1$ for a natural class of multiparameter singular integral operators which do not decay away from the support of rectangular atoms. Hence the usual argument via a Journé-type covering lemma to deduce bounds on product $H^1$ is not valid. We consider t...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2020-01, Vol.36 (2), p.611-639 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish endpoint bounds on a Hardy space $H^1$ for a natural class of multiparameter singular integral operators which do not decay away from the support of rectangular atoms. Hence the usual argument via a Journé-type covering lemma to deduce bounds on product $H^1$ is not valid. We consider the class of multiparameter oscillatory singular integral operators given by convolution with the classical multiple Hilbert transform kernel modulated by a general polynomial oscillation. Various characterisations are known which give $L^2$ (or more generally $L^p$, $1 < p < \infty$) bounds. Here we initiate an investigation of endpoint bounds on the rectangular Hardy space $H^1$ in two dimensions; we give a characterisation when bounds hold which are uniform over a given subspace of polynomials and somewhat surprisingly, we discover that the Hardy space and $L^p$ theories for these operators are very different. |
---|---|
ISSN: | 0213-2230 2235-0616 2235-0616 |
DOI: | 10.4171/rmi/1144 |