Enabling Real-time Multi-messenger Astrophysics Discoveries with Deep Learning

Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews physics 2019-10, Vol.1 (10), p.600-608
Hauptverfasser: Huerta, E A, Allen, Gabrielle, Andreoni, Igor, Antelis, Javier M, Bachelet, Etienne, Berriman, G Bruce, Bianco, Federica B, Biswas, Rahul, Kind, Matias Carrasco, Chard, Kyle, Cho, Minsik, Cowperthwaite, Philip S, Etienne, Zacariah B, Fishbach, Maya, Forster, Francisco, George, Daniel, Gibbs, Tom, Graham, Matthew, Gropp, William, Gruendl, Robert, Gupta, Anushri, Haas, Roland, Habib, Sarah, Jennings, Elise, Johnson, Margaret W G, Katsavounidis, Erik, Katz, Daniel S, Khan, Asad, Kindratenko, Volodymyr, Kramer, William T C, Liu, Xin, Mahabal, Ashish, Marka, Zsuzsa, McHenry, Kenton, Miller, J M, Moreno, Claudia, Neubauer, M S, Oberlin, Steve, Jr, Alexander Rolivas, Petravick, Donald, Rebei, Adam, Rosofsky, Shawn, Ruiz, Milton, Saxton, Aaron, Schutz, Bernard F, Schwing, Alex, Seidel, Ed, Shapiro, Stuart L, Shen, Hongyu, Shen, Yue, Singer, Leo P, Sipocz, Brigitta M, Sun, Lunan, Towns, John, Tsokaros, Antonios, Wei, Wei, Wells, Jack, Williams, Timothy J, Xiong, Jinjun, Zhao, Zhizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics.
ISSN:2522-5820
2522-5820
DOI:10.1038/s42254-019-0097-4