Quantum independent-set problem and non-Abelian adiabatic mixing

We present an efficient quantum algorithm for independent-set problems in graph theory, based on non- Abelian adiabatic mixing. In this work, we illustrate the performance of our algorithm with analysis and numerical calculations for two different types of graphs, with the number of edges proportion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2020-01, Vol.101 (1), Article 012318
Hauptverfasser: Wu, Biao, Yu, Hongye, Wilczek, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an efficient quantum algorithm for independent-set problems in graph theory, based on non- Abelian adiabatic mixing. In this work, we illustrate the performance of our algorithm with analysis and numerical calculations for two different types of graphs, with the number of edges proportional to the number of vertices or its square. Our quantum algorithm is compared to the corresponding quantum circuit algorithms and classical algorithms. Non-Abelian adiabatic mixing can be a general technique to aid exploration in a landscape of near-degenerate ground states.
ISSN:2469-9926
2469-9934
2469-9934
DOI:10.1103/PhysRevA.101.012318