Spectral variations of Lyman $\alpha$ emission within strongly lensed sources observed with MUSE
ABSTRACT We present an analysis of ${\rm H\,\rm{\small {I}}}$ Lyman $\alpha$ emission in deep VLT/MUSE observations of two highly magnified and extended galaxies at $z=3.5$ and 4.03, including a newly discovered, almost complete Einstein ring. While these Lyman $\alpha$ haloes are intrinsically simi...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2019-11, Vol.489 (4), p.5022-5029 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
We present an analysis of ${\rm H\,\rm{\small {I}}}$ Lyman $\alpha$ emission in deep VLT/MUSE observations of two highly magnified and extended galaxies at $z=3.5$ and 4.03, including a newly discovered, almost complete Einstein ring. While these Lyman $\alpha$ haloes are intrinsically similar to the ones typically seen in other MUSE deep fields, the benefits of gravitational lensing allow us to construct exceptionally detailed maps of Lyman $\alpha$ line properties at sub-kpc scales. By combining all multiple images, we are able to observe complex structures in the Lyman $\alpha$ emission and uncover small ($\sim120$ km s−1 in Lyman $\alpha$ peak shift), but significant at $ \gt $4 $\sigma$, systematic variations in the shape of the Lyman $\alpha$ line profile within each halo. Indeed, we observe a global trend for the line peak shift to become redder at large radii, together with a strong correlation between the peak wavelength and line width. This systematic intrahalo variation is markedly similar to the object-to-object variations obtained from the integrated properties of recent large samples. Regions of high surface brightness correspond to relatively small line shifts, which could indicate that Lyman $\alpha$ emission escapes preferentially from regions where the line profile has been less severely affected by scattering of Lyman $\alpha$ photons. |
---|---|
ISSN: | 0035-8711 1365-2966 1365-2966 |
DOI: | 10.1093/mnras/stz2492 |