The Cyclic Sieving Phenomenon on Circular Dyck Paths
We give a $q$-enumeration of circular Dyck paths, which is a superset of the classical Dyck paths enumerated by the Catalan numbers. These objects have recently been studied by Alexandersson and Panova. Furthermore, we show that this $q$-analogue exhibits the cyclic sieving phenomenon under a natura...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2019, Vol.26 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a $q$-enumeration of circular Dyck paths, which is a superset of the classical Dyck paths enumerated by the Catalan numbers. These objects have recently been studied by Alexandersson and Panova. Furthermore, we show that this $q$-analogue exhibits the cyclic sieving phenomenon under a natural action of the cyclic group. The enumeration and cyclic sieving is generalized to Möbius paths. We also discuss properties of a generalization of cyclic sieving, which we call subset cyclic sieving, and introduce the notion of Lyndon-like cyclic sieving that concerns special recursive properties of combinatorial objects exhibiting the cyclic sieving phenomenon. |
---|---|
ISSN: | 1077-8926 1097-1440 1077-8926 |
DOI: | 10.37236/8720 |