The Cyclic Sieving Phenomenon on Circular Dyck Paths

We give a $q$-enumeration of circular Dyck paths, which is a superset of the classical Dyck paths enumerated by the Catalan numbers. These objects have recently been studied by Alexandersson and Panova. Furthermore, we show that this $q$-analogue exhibits the cyclic sieving phenomenon under a natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2019, Vol.26 (4)
Hauptverfasser: Alexandersson, Per, Linusson, Svante, Potka, Samu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a $q$-enumeration of circular Dyck paths, which is a superset of the classical Dyck paths enumerated by the Catalan numbers. These objects have recently been studied by Alexandersson and Panova. Furthermore, we show that this $q$-analogue exhibits the cyclic sieving phenomenon under a natural action of the cyclic group. The enumeration and cyclic sieving is generalized to Möbius paths. We also discuss properties of a generalization of cyclic sieving, which we call subset cyclic sieving, and introduce the notion of Lyndon-like cyclic sieving that concerns special recursive properties of combinatorial objects exhibiting the cyclic sieving phenomenon.
ISSN:1077-8926
1097-1440
1077-8926
DOI:10.37236/8720