Protein tertiary structure and the myoglobin phase diagram

We develop an effective theory approach to investigate the phase properties of globular proteins. Instead of interactions between individual atoms or localized interaction centers, the approach builds directly on the tertiary structure of a protein. As an example we construct the phase diagram of (a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-07, Vol.9 (1), p.10819, Article 10819
Hauptverfasser: Begun, Alexander, Molochkov, Alexander, Niemi, Antti J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop an effective theory approach to investigate the phase properties of globular proteins. Instead of interactions between individual atoms or localized interaction centers, the approach builds directly on the tertiary structure of a protein. As an example we construct the phase diagram of (apo)myoglobin with temperature ( T ) and acidity ( pH ) as the thermodynamical variables. We describe how myoglobin unfolds from the native folded state to a random coil when temperature and acidity increase. We confirm the presence of two molten globule folding intermediates, and we predict an abrupt transition between the two when acidity changes. When temperature further increases we find that the abrupt transition line between the two molten globule states terminates at a tricritical point, where the helical structures fade away. Our results also suggest that the ligand entry and exit is driven by large scale collective motions that destabilize the myoglobin F-helix.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-47317-y