A drug pocket at the lipid bilayer-potassium channel interface
Many pharmaceutical drugs against neurological and cardiovascular disorders exert their therapeutic effects by binding to specific sites on voltage-gated ion channels of neurons or cardiomyocytes. To date, all molecules targeting known ion channel sites bind to protein pockets that are mainly surrou...
Gespeichert in:
Veröffentlicht in: | Science advances 2017-10, Vol.3 (10), p.e1701099-e1701099 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many pharmaceutical drugs against neurological and cardiovascular disorders exert their therapeutic effects by binding to specific sites on voltage-gated ion channels of neurons or cardiomyocytes. To date, all molecules targeting known ion channel sites bind to protein pockets that are mainly surrounded by water. We describe a lipid-protein drug-binding pocket of a potassium channel. We synthesized and electrophysiologically tested 125 derivatives, analogs, and related compounds to dehydroabietic acid. Functional data in combination with docking and molecular dynamics simulations mapped a binding site for small-molecule compounds at the interface between the lipid bilayer and the transmembrane segments S3 and S4 of the voltage-sensor domain. This fundamentally new binding site for small-molecule compounds paves the way for the design of new types of drugs against diseases caused by altered excitability. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.1701099 |