Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange

RuO2 catalysts exhibit record activities toward the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2017-04, Vol.2 (4), p.876-881
Hauptverfasser: Stoerzinger, Kelsey A, Diaz-Morales, Oscar, Kolb, Manuel, Rao, Reshma R, Frydendal, Rasmus, Qiao, Liang, Wang, Xiao Renshaw, Halck, Niels Bendtsen, Rossmeisl, Jan, Hansen, Heine A, Vegge, Tejs, Stephens, Ifan E. L, Koper, Marc T. M, Shao-Horn, Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RuO2 catalysts exhibit record activities toward the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by density functional theory, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.
ISSN:2380-8195
2380-8195
DOI:10.1021/acsenergylett.7b00135