The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2017-10, Vol.848 (2), p.L27 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared K s -band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses A 195 ). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major-if not the dominant-site of rapid neutron capture nucleosynthesis in the universe. |
---|---|
ISSN: | 2041-8205 2041-8213 2041-8213 |
DOI: | 10.3847/2041-8213/aa90b6 |