Modes of carbon fixation in an arsenic and CO2-rich shallow hydrothermal ecosystem

The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO 2 -rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Reports 2017-10, Vol.7 (1), p.1-14, Article 14708
Hauptverfasser: Callac, Nolwenn, Posth, Nicole R., Rattray, Jayne E., Yamoah, Kweku K. Y., Wiech, Alan, Ivarsson, Magnus, Hemmingsson, Christoffer, Kilias, Stephanos P., Argyraki, Ariadne, Broman, Curt, Skogby, Henrik, Smittenberg, Rienk H., Fru, Ernest Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO 2 -rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO 2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO 2 , As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO 2 -rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-13910-2