Tracing the Hercules stream with Gaia and LAMOST: new evidence for a fast bar in the Milky Way

Abstract The length and pattern speed of the Milky Way bar are still controversial. Photometric and spectroscopic surveys of the inner Galaxy, as well as gas kinematics, favour a long and slowly rotating bar, with corotation around a Galactocentric radius of 6 kpc. On the other hand, the existence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2017-03, Vol.466 (1), p.L113-L117
Hauptverfasser: Monari, Giacomo, Kawata, Daisuke, Hunt, Jason A. S., Famaey, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The length and pattern speed of the Milky Way bar are still controversial. Photometric and spectroscopic surveys of the inner Galaxy, as well as gas kinematics, favour a long and slowly rotating bar, with corotation around a Galactocentric radius of 6 kpc. On the other hand, the existence of the Hercules stream in local velocity space favours a short and fast bar with corotation around 4 kpc. This follows from the fact that the Hercules stream looks like a typical signature of the outer Lindblad resonance of the bar. As we showed recently, reconciling this local stream with a slow bar would need to find a yet unknown alternative explanation, based, for instance, on the effect of spiral arms. Here, by combining the TGAS catalogue of the Gaia DR1 with LAMOST radial velocities, we show that the position of Hercules in velocity space as a function of radius in the outer Galaxy indeed varies exactly as predicted by fast bar models with a pattern speed no less than 1.8 times the circular frequency at the Sun's position.
ISSN:1745-3925
1745-3933
0035-8711
1365-2966
1745-3933
DOI:10.1093/mnrasl/slw238