On the Association between Veining and Index Mineral Distributions in Barrow’s Metamorphic Zones, Glen Esk, Scotland
The concept of index mineral based metamorphic zones was first introduced by George Barrow in 1912 and the Barrovian metamorphic zones continue to be used as a framework for describing regional metamorphism. Pressure, temperature, and protolith composition are widely recognized as primary controls o...
Gespeichert in:
Veröffentlicht in: | Journal of petrology 2017-05, Vol.58 (5), p.885 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concept of index mineral based metamorphic zones was first introduced by George Barrow in 1912 and the Barrovian metamorphic zones continue to be used as a framework for describing regional metamorphism. Pressure, temperature, and protolith composition are widely recognized as primary controls on index mineral distribution. Today, metamorphic fluid flow is also recognized as an important driver of metamorphic reactions. The aim of this study is to establish if and how metamorphic fluids control index mineral distribution during Barrovian metamorphism. We use samples from Barrow’s type locality in Glen Esk, SE Scottish Highlands, to study possible relationships between veining and index mineral distribution. In addition to petrographic and textural observations, we use whole-rock compositions, mineral compositions and oxygen isotope analyses. At low grade, in the chlorite zone and most of the biotite zone, no correlation between veining and index mineral distribution is seen. At higher grade, in the garnet and staurolite zones, index mineral abundance is shown to be higher adjacent to veins. These trends coincide with other mineralogical, chemical, and isotopic changes in the vein-proximal rock, indicative of fluid–rock interaction. Kyanite distribution is homogeneous in the kyanite zone. However, we show that this too relates to extensive fluid–rock interaction. Garnet-, staurolite-, and kyanite-bearing selvedges are common in the sillimanite zone. However, sillimanite distribution is unrelated to these selvedges, which supports models arguing that sillimanite formed during a separate metamorphic event. We infer fluid flow from high grade to low grade because the fluid was out of isotopic equilibrium with the lower grade rocks, but in equilibrium with the higher grade rocks. We conclude that fluid flow played a major role in the stabilization and distribution of Barrovian index minerals in Glen Esk, and that the importance of fluid flow was greater at higher metamorphic grades. |
---|---|
ISSN: | 0022-3530 1460-2415 1460-2415 |
DOI: | 10.1093/petrology/egx039 |