Building a coherent hydro-climatic modelling framework for the data limited Kilombero Valley of Tanzania
This thesis explores key aspects for synthesizing data across spatiotemporal scales relevant for water resources management in an Eastern Africa context. Specifically, the potential of large scale global precipitation datasets (GPDs) in data limited regions to overcome spatial and temporal data gaps...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This thesis explores key aspects for synthesizing data across spatiotemporal scales relevant for water resources management in an Eastern Africa context. Specifically, the potential of large scale global precipitation datasets (GPDs) in data limited regions to overcome spatial and temporal data gaps is considered. The thesis also explores the potential to utilize limited and non-continuous streamflow and stream water chemistry observations to increase hydrological process understanding. The information gained is then used to build a coherent hydro-climatic framework for streamflow modelling. In this thesis, Kilombero Valley Drainage Basin (KVDB) in Tanzania is used as an example of a data limited region targeted for rapid development, intensification and expansion of agriculture. As such, it is representative for many regions across the Eastern Africa. With regards to the data synthesis, two satellite products, three reanalysis products and three interpolated products were evaluated based on their spatial and temporal precipitation patterns. Streamflow data from KVDB and eight subcatchments were then assessed for quality with regards to missing data. Furthermore, recession analysis was used to estimate catchment-scale characteristic drainage timescale. Results from these streamflow analyses, in conjunction with a hydrological tracer-based analysis, were then used for improved understanding of streamflow generation in the region. Finally, a coherent modelling framework using the HBV rainfall-runoff model was implemented and evaluated based on daily streamflow simulation. Despite the challenges of data limited regions and the often large uncertainty in results, this thesis demonstrates that improved process understanding could be obtained from limited streamflow records and a focused hydrochemical sampling when experimental design natural variability were leveraged to gain a large signal to noise ratio. Combining results across all investigations rendered information useful for the conceptualization and implementation of the hydro-climatic modelling framework relevant in Kilombero Valley. For example, when synthesized into a coherent framework the GPDs could be downscaled and used for daily streamflow simulations at the catchment scale with moderate success. This is promising when considering the need for estimating impacts of potential future land use and climate change as well as agricultural intensification.
Denna avhandling utforskar aspekter på att syn |
---|