GenFamClust: an accurate, synteny-aware and reliable homology inference algorithm

Homology inference is pivotal to evolutionary biology and is primarily based on significant sequence similarity, which, in general, is a good indicator of homology. Algorithms have also been designed to utilize conservation in gene order as an indication of homologous regions. We have developed GenF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC evolutionary biology 2016-06, Vol.16 (1), p.120-120, Article 120
Hauptverfasser: Ali, Raja H, Muhammad, Sayyed A, Arvestad, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homology inference is pivotal to evolutionary biology and is primarily based on significant sequence similarity, which, in general, is a good indicator of homology. Algorithms have also been designed to utilize conservation in gene order as an indication of homologous regions. We have developed GenFamClust, a method based on quantification of both gene order conservation and sequence similarity. In this study, we validate GenFamClust by comparing it to well known homology inference algorithms on a synthetic dataset. We applied several popular clustering algorithms on homologs inferred by GenFamClust and other algorithms on a metazoan dataset and studied the outcomes. Accuracy, similarity, dependence, and other characteristics were investigated for gene families yielded by the clustering algorithms. GenFamClust was also applied to genes from a set of complete fungal genomes and gene families were inferred using clustering. The resulting gene families were compared with a manually curated gold standard of pillars from the Yeast Gene Order Browser. We found that the gene-order component of GenFamClust is simple, yet biologically realistic, and captures local synteny information for homologs. The study shows that GenFamClust is a more accurate, informed, and comprehensive pipeline to infer homologs and gene families than other commonly used homology and gene-family inference methods.
ISSN:1471-2148
1471-2148
DOI:10.1186/s12862-016-0684-2