EMM-23: A Stable High-Silica Multidimensional Zeolite with Extra-Large Trilobe-Shaped Channels

Stable, multidimensional, and extra-large pore zeolites are desirable by industry for catalysis and separation of bulky molecules. Here we report EMM-23, the first stable, three-dimensional extra-large pore aluminosilicate zeolite. The structure of EMM-23 was determined from submicron-sized crystals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-10, Vol.136 (39), p.13570-13573
Hauptverfasser: Willhammar, Tom, Burton, Allen W, Yun, Yifeng, Sun, Junliang, Afeworki, Mobae, Strohmaier, Karl G, Vroman, Hilda, Zou, Xiaodong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stable, multidimensional, and extra-large pore zeolites are desirable by industry for catalysis and separation of bulky molecules. Here we report EMM-23, the first stable, three-dimensional extra-large pore aluminosilicate zeolite. The structure of EMM-23 was determined from submicron-sized crystals by combining electron crystallography, solid-state nuclear magnetic resonance (NMR), and powder X-ray diffraction. The framework contains highly unusual trilobe-shaped pores that are bound by 21–24 tetrahedral atoms. These extra-large pores are intersected perpendicularly by a two-dimensional 10-ring channel system. Unlike most ideal zeolite frameworks that have tetrahedral sites with four next-nearest tetrahedral neighbors (Q4 species), this unusual zeolite possesses a high density of Q2 and Q3 silicon species. It is the first zeolite prepared directly with Q2 species that are intrinsic to the framework. EMM-23 is stable after calcination at 540 °C. The formation of this highly interrupted structure is facilitated by the high density of extra framework positive charge introduced by the dicationic structure directing agent.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/ja507615b