Negative- U superconductivity on the surface of topological insulators
We study the effects of a finite density of negative-U centers (NUCs) on the surface of a three-dimensional topological insulator. The surface Dirac fermions mediate a power-law interaction among the local Cooper pairs at the NUCs, and the interaction remains long-ranged for weak disorder. Supercond...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-09, Vol.90 (10), p.104517, Article 104517 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the effects of a finite density of negative-U centers (NUCs) on the surface of a three-dimensional topological insulator. The surface Dirac fermions mediate a power-law interaction among the local Cooper pairs at the NUCs, and the interaction remains long-ranged for weak disorder. Superconductivity can be generated in the presence of a random distribution of NUCs. The NUCs play dual roles as both pair creators and pair breakers, and the competition of the two effects results in a nonmonotonic dependence of the mean-field superconducting transition temperature on the density of NUCs. Global phase coherence is established through coupling the locally superconducting puddles via Josephson coupling. Rare fluctuations play important roles, and a globally superconducting phase can only be achieved at large enough concentration of NUCs. The p- wave component of the superconducting order parameter gives rise to frustration among the superconducting grains, which is captured by a Potts-XY type model. New phases with chiral order, glass order, and, possibly, topological order can then emerge in the system of superconducting grains. |
---|---|
ISSN: | 1098-0121 1550-235X 1550-235X |
DOI: | 10.1103/PhysRevB.90.104517 |