An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase
Ni-containing methyl-coenzyme M reductase (MCR) is capable of catalyzing methane formation from methyl-coenzyme M (CH3-SCoM) and coenzyme B (CoB-SH), and also its reverse reaction (methane oxidation). Based on extensive experimental and theoretical investigations, it has turned out that a mechanism...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (27), p.14029-14035 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ni-containing methyl-coenzyme M reductase (MCR) is capable of catalyzing methane formation from methyl-coenzyme M (CH3-SCoM) and coenzyme B (CoB-SH), and also its reverse reaction (methane oxidation). Based on extensive experimental and theoretical investigations, it has turned out that a mechanism including an organometallic methyl-Ni(III)F430 intermediate is inaccessible, while another mechanism involving a methyl radical and a Ni(II)-SCoM species currently appears to be the most acceptable one for MCR. In the present paper, using hybrid density functional theory and an active-site model based on the X-ray crystal structure, two other mechanisms were studied and finally also ruled out. One of them, involving proton binding on the CH3-SCoM substrate, which should facilitate methyl-Ni(III)F430 formation, is demonstrated to be quite unfavorable since the substrate has a much smaller proton affinity than the F430 cofactor. Another one (oxidative addition mechanism) is also shown to be unfavorable for the MCR reaction, due to the large endothermicity for the formation of the ternary intermediate with side-on C-S (for CH3-SCoM) or C-H (for methane) coordination to Ni. |
---|---|
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/c4cp01483a |