Numerical simulation of particle formation in the rapid expansion of supercritical solution process

[Display omitted] •We studied particle formation in RESS process.•Characteristics that happen off-axis can be captured.•Maximal nucleation rate and number density occur near the nozzle exit.•Particles grow mainly across the shocks.•Effects of preexpansion temperature, pressure and place position hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercritical fluids 2014-11, Vol.95, p.572-587
Hauptverfasser: Liu, Jiewei, Amberg, Gustav, Do-Quang, Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •We studied particle formation in RESS process.•Characteristics that happen off-axis can be captured.•Maximal nucleation rate and number density occur near the nozzle exit.•Particles grow mainly across the shocks.•Effects of preexpansion temperature, pressure and place position have been analyzed. In this paper, we numerically study particle formation in the rapid expansion of supercritical solution (RESS) process in a two dimensional, axisymmetric geometry, for a benzoic acid+CO2 system. The fluid is described by the classical Navier–Stokes equation, with the thermodynamic pressure being replaced by a generalized pressure tensor. Homogenous particle nucleation, transport, condensation and coagulation are described by a general dynamic equation, which is solved using the method of moments. The results show that the maximal nucleation rate and number density occurs near the nozzle exit, and particle precipitation inside the nozzle might not be ignored. Particles grow mainly across the shocks. Fluid in the shear layer of the jet shows a relatively low temperature, high nucleation rate, and carries particles with small sizes. On the plate, particles within the jet have smaller average size and higher geometric mean, while particles outside the jet shows a larger average size and a lower geometric mean. Increasing the preexpansion temperature will increase both the average particle size and standard deviation. The preexpansion pressure does not show a monotonic dependency with the average particle size. Increasing the distance between the plate and the nozzle exit might decrease the particle size. For all the cases in this paper, the average particle size on the plate is on the order of tens of nanometers.
ISSN:0896-8446
1872-8162
1872-8162
DOI:10.1016/j.supflu.2014.08.033