Cytotoxicity tests of cellulose nanofibril-based structures

Cellulose nanofibrils based on wood pulp fibres are most promising for biomedical applications. Bacterial cellulose has been suggested for some medical applications and is presently used as wound dressing. However, cost-efficient processes for mass production of bacterial cellulose are lacking. Henc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2013-08, Vol.20 (4), p.1765-1775
Hauptverfasser: Alexandrescu, Laura, Syverud, Kristin, Gatti, Antonietta, Chinga-Carrasco, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellulose nanofibrils based on wood pulp fibres are most promising for biomedical applications. Bacterial cellulose has been suggested for some medical applications and is presently used as wound dressing. However, cost-efficient processes for mass production of bacterial cellulose are lacking. Hence, fibrillation of cellulose wood fibres is most interesting, as the cellulose nanofibrils can efficiently be produced in large quantities. However, the utilization of cellulose nanofibrils from wood requires a thorough verification of its biocompatibility, especially with fibroblast cells which are important in regenerative tissue and particularly in wound healing. The cellulose nanofibril structures used in this study were based on Eucalyptus and Pinus radiata pulp fibres. The nanofibrillated materials were manufactured using a homogenizer without pre-treatment and with 2,2,6,6-tetramethylpiperidine-1-oxy radical as pre-treatment, thus yielding nanofibrils low and high level of anionic charge, respectively. From these materials, two types of nanofibril-based structures were formed; (1) thin and dense structures and (2) open and porous structures. Cytotoxicity tests were applied on the samples, which demonstrated that the nanofibrils do not exert acute toxic phenomena on the tested fibroblast cells (3T3 cells). The cell membrane, cell mitochondrial activity and the DNA proliferation remained unchanged during the tests, which involved direct and indirect contact between the nano-structured materials and the 3T3 cells. Some samples were modified using the crosslinking agent polyethyleneimine (PEI) or the surfactant cetyl trimethylammonium bromide (CTAB). The sample modified with CTAB showed a clear toxic behaviour, having negative effects on cell survival, viability and proliferation. CTAB is an antimicrobial component, and thus this result was as expected. The sample crosslinked with PEI also had a significant reduction in cell viability indicating a reduction in DNA proliferation. We conclude that the neat cellulose nanostructured materials tested in this study are not toxic against fibroblasts cells. This is most important as nano-structured materials based on nanofibrils from wood pulp fibres are promising as substrate for regenerative medicine and wound healing.
ISSN:0969-0239
1572-882X
1572-882X
DOI:10.1007/s10570-013-9948-9