Music Style Transfer Using Constant-Q Transform Spectrograms
Previous work on music generation and transformation has commonly targeted single instrument or single melody music. Here, in contrast, five music genres are used with the goal to achieve selective remixing by using domain transfer methods on spectrogram images of music. A pipeline architecture comp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous work on music generation and transformation has commonly targeted single instrument or single melody music. Here, in contrast, five music genres are used with the goal to achieve selective remixing by using domain transfer methods on spectrogram images of music. A pipeline architecture comprised of two independent generative adversarial network models was created. The first applies features from one of the genres to constant-Q transform spectrogram images to perform style transfer. The second network turns a spectrogram into a real-value tensor representation which is approximately reconstructed back into audio. The system was evaluated experimentally and through a survey. Due to the increased complexity involved in processing high sample rate music with homophonic or polyphonic audio textures, the system’s audio output was considered to be low quality, but the style transfer produced noticeable selective remixing on most of the music tracks evaluated. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-03789-4_13 |