Resistance Measurements to Find High Moisture Content Inclusions Adapted for Large Timber Bridge Cross-Sections
One challenge of monitoring and inspecting timber bridges is the difficulty of measuring the moisture content anywhere other than close to the surface. Damage or design mistakes leading to water penetration might not be detected in time, leading to costly repairs. By placing electrodes between the g...
Gespeichert in:
Veröffentlicht in: | Bioresources 2017-01, Vol.12 (2), p.3570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One challenge of monitoring and inspecting timber bridges is the difficulty of measuring the moisture content anywhere other than close to the surface. Damage or design mistakes leading to water penetration might not be detected in time, leading to costly repairs. By placing electrodes between the glulam beams, the moisture content through the bridge deck can be measured. Due to the logarithmic decrease of the resistance in wood as a function of electrode length, the model must be calibrated for measurement depth. Two models were created: one for electrode lengths of 50 mm and one for electrode lengths up to 1355 mm. The model for short electrodes differed by no more than 1 percentage points compared with the oven dry specimens. The model for long electrodes differed up to 2 percentage points for lengths up to 905 mm, and over that it could differ up to 4 percentage points. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.12.2.3570-3582 |