Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite

Variation in 13C/12C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13C/12C-ratios with secondary ion mass spectrometry (SIMS). Spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geochemistry 2016-04, Vol.67, p.30-41
Hauptverfasser: Sahlstedt, Elina, Karhu, Juha A., Pitkänen, Petteri, Whitehouse, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variation in 13C/12C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13C/12C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ13C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ34S values indicative of bacterial sulfate reduction. The δ13C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ13C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ13C values of Group 3 calcite. The δ13C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ13C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of 300 m. One sample at a depth of 111 m showed a transition from methanogenetic conditions (calcite bearing methanogenetic signature) to sulfate reducing (precipitation of pyrite on calcite surface), however, the timing of this transit
ISSN:0883-2927
1872-9134
1872-9134
DOI:10.1016/j.apgeochem.2016.01.010