In situ study of relative electron transport rates (ETR) in the marine macroalga Fucus vesiculosus from the Baltic Sea at different depths and times of the year
The brown alga Fucus vesiculous is one of the few marine species in the Baltic Sea. Fucus vesiculosus shows high morphological and physiological variability as a response to its environmental conditions. The salinity in the Baltic Sea is 4–5 psu, compared to 35 psu in the Atlantic. Photosynthesi...
Gespeichert in:
Veröffentlicht in: | Journal of applied phycology 2008, Vol.20 (5), p.751 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The brown alga Fucus vesiculous is one of the few marine species in the Baltic Sea. Fucus vesiculosus shows high morphological and physiological variability as a response to its environmental conditions. The salinity in the Baltic Sea is 4–5 psu, compared to 35 psu in the Atlantic. Photosynthesis of algae is usually measured after collection and transportation to constant culture conditions. However, in this study, relative photosynthetic electron transport rates, calculated from chlorophyll a fluorescence parameters were compared in algae collected from 1 and 4 m depths by SCUBA divers. Measurements of light response curves from the same individuals of F. vesiculosus at different depths and times of the year have, to our knowledge, not been made previously. Measurements were performed on four different occasions during the spring of 2005 (25 February, 3 and 29 April, and 26 May) in the Baltic Sea, using rapid light curves generated with a Diving PAM. In addition, samples were collected for photoinhibition studies in the laboratory. The light response curves obtained in situ at 1 and 4 m depths for F. vesiculosus showed lower values of light saturation with depth. When algae from 1 and 4 m depths were exposed to high irradiances of photosynthetically active radiation (1,400 μmol photons m−2 s−1), algae from 1 m depth showed a higher degree of photoinhibition in comparison to algae from 4 m depth. |
---|---|
ISSN: | 1573-5176 0921-8971 |
DOI: | 10.1007/s10811-007-9288-y |