Density property for hypersurfaces $$UV = P({\bar X})

We study hypersurfaces of Cn+2 ¯x,u,v given by equations of form uv = p( ¯x) where the zero locus of a polynomial p is smooth reduced. The main result says that the Lie algebra generated by algebraic completely integrable vector fields on such a hypersurface coincides with the Lie algebra of all alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2008-01, Vol.258 (1), p.115-131
Hauptverfasser: Kaliman, Shulim, Kutzschebauch, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study hypersurfaces of Cn+2 ¯x,u,v given by equations of form uv = p( ¯x) where the zero locus of a polynomial p is smooth reduced. The main result says that the Lie algebra generated by algebraic completely integrable vector fields on such a hypersurface coincides with the Lie algebra of all algebraic vector fields. Consequences of this result for some conjectures of affine algebraic geometry and for the Oka-Grauert-Gromov principle are discussed.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-007-0162-z