Density property for hypersurfaces $$UV = P({\bar X})
We study hypersurfaces of Cn+2 ¯x,u,v given by equations of form uv = p( ¯x) where the zero locus of a polynomial p is smooth reduced. The main result says that the Lie algebra generated by algebraic completely integrable vector fields on such a hypersurface coincides with the Lie algebra of all alg...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2008-01, Vol.258 (1), p.115-131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study hypersurfaces of Cn+2
¯x,u,v given by equations of form uv = p( ¯x) where the zero locus of a polynomial p is smooth reduced. The main result says that the Lie algebra generated by algebraic completely integrable vector fields on such a hypersurface
coincides with the Lie algebra of all algebraic vector fields. Consequences of this result for
some conjectures of affine algebraic geometry and for the Oka-Grauert-Gromov principle
are discussed. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-007-0162-z |