A Novel Two-Level Clustering-Based Differential Evolution Algorithm for Training Neural Networks
Determining appropriate weights and biases for feed-forward neural networks is a critical task. Despite the prevalence of gradient-based methods for training, these approaches suffer from sensitivity to initial values and susceptibility to local optima. To address these challenges, we introduce a no...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determining appropriate weights and biases for feed-forward neural networks is a critical task. Despite the prevalence of gradient-based methods for training, these approaches suffer from sensitivity to initial values and susceptibility to local optima. To address these challenges, we introduce a novel two-level clustering-based differential evolution approach, C2L-DE, to identify the initial seed for a gradient-based algorithm. In the initial phase, clustering is employed to detect some regions in the search space. Population updates are then executed based on the information available within each region. A new central point is proposed in the subsequent phase, leveraging cluster centres for incorporation into the population. Our C2L-DE algorithm is compared against several recent DE-based neural network training algorithms, and is shown to yield favourable performance. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-56852-7_17 |