The influence of Pulp Type and Hot-pressing Conditions on Paper Strength Development
The hot-pressing technology has proven to have the potential for manufacturing of strong, wet stable materials based on eco-friendly renewable and recyclable lignocellulose. The purpose of this work was to study how the pulp characteristics and the hot-pressing conditions affect the dry and wet stre...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hot-pressing technology has proven to have the potential for manufacturing of strong, wet stable materials based on eco-friendly renewable and recyclable lignocellulose. The purpose of this work was to study how the pulp characteristics and the hot-pressing conditions affect the dry and wet strength properties of paper. Two different devices for hot-pressing were used. One using felted nip and a heated cylinder with a temperature limit at 200°C and one new design using a hard nip and an IR-heated steel belt with a temperature limit of 300°C.
The results showed that dry strength can increase up to 150% for high yield pulp (HYP) based sheets at pressing temperatures well above the softening temperature of lignin. The maximum dry tensile strength obtained was 70 kNm/kg at 200°C pressing temperature and the corresponding value for a lignin-rich kraft pulp was about 130 kNm/kg, an increase of 30%. For all lignin-rich pulps the dry strength increased linearly with density up to 200°C whereafter it levelled off and was reduced.
The wet tensile strength for paper based on HYP increase from 2 to 28 kNm/kg and for paper based on unbleached kraft pulp from 5 up to 60 kNm/kg in the temperature interval 20-270°C. The increase in wet strength independently of pulp grade seemed to be exponential to the pressing temperature with the steepest slope above 150°C. For unbleached kraft pulp a lignin content of minimum 7% seemed to be necessary for improved wet strength but 12% gave the highest value within the studied interval. In HYPs the lignin content is 25-28% depending on the pulping process but the level of wet strength was lower which is probably related to the lower density and lower dry strength compared to unbleached kraft pulps.
Dry strength of lignin-rich paper is enhanced by improved fibre-fibre contact that can be improved by compression at high temperature, well above softening temperature (Tg) of moist lignin, native or chemically modified. It is known that sulfonation of lignin lowers the Tg in moist conditions. It was observed that at 150°C temperature the dry strength increased by 15% to a level of 71 kNm/kg for the high sulfonated pulp compared to the lower sulfonated pulp that had a dry strength of 60 kNm/kg at the same density. The level of wet strength was however not found to be affected by the sulfonation.
Paper strength is to a large extent related to pulp fibre morphology and fines content. In this work studied these aspects where briefly studied |
---|