Bimetallic Phosphides for Hybrid Supercapacitors
Supercapacitors (SCs) are considered promising energy storage systems because of their high power output and long-term cycling stability; however, they usually exhibit poor energy density. The hybrid supercapacitor (HSC) is an emerging concept in which two dissimilar electrodes with different charge...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-06, Vol.12 (21), p.5138-5149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supercapacitors (SCs) are considered promising energy storage systems because of their high power output and long-term cycling stability; however, they usually exhibit poor energy density. The hybrid supercapacitor (HSC) is an emerging concept in which two dissimilar electrodes with different charge storage mechanisms are paired to deliver high energy without sacrificing power output. This Perspective highlights the features of transition-metal phosphides (TMPs) as the positive electrode in HSCs. In particular, bimetallic nickel cobalt phosphide (NiCoP) with multiple redox sites, excellent electrochemical reversibility, and stability is discussed. We outline how the rational heterostructures, elemental variations, and nanocomposite morphologies tune the electrochemical properties of NiCoP as the positive electrode in HSCs. The Perspective further sheds light on NiCoP-based composites that help in improving the overall performance of HSCs in terms of energy density and cycling stability. The key scientific challenges and perspectives on building efficient and stable HSCs for future applications are discussed. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.1c00562 |