Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales

This paper concerns the homogenization of nonlinear dissipative hyperbolic problems partial derivative ttu(epsilon) (x, t) - del . (a(x/epsilon(q1),..., x/epsilon(qn), t/epsilon(r1),..., t/epsilon(rm)) del u(epsilon) (x, t)) +g (x/epsilon(r1),..., x/epsilon(rn), t/epsilon(r1), u(epsilon) (x, t), del...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks and heterogeneous media 2016, Vol.11 (4), p.627-653
Hauptverfasser: Flodén, Liselott, Persson, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns the homogenization of nonlinear dissipative hyperbolic problems partial derivative ttu(epsilon) (x, t) - del . (a(x/epsilon(q1),..., x/epsilon(qn), t/epsilon(r1),..., t/epsilon(rm)) del u(epsilon) (x, t)) +g (x/epsilon(r1),..., x/epsilon(rn), t/epsilon(r1), u(epsilon) (x, t), del u(epsilon) (x, t)) = f (x, t) where both the elliptic coefficient a and the dissipative term a are periodic in the n + m first arguments where n and m may attain any non-negative integer value. The homogenization procedure is performed within the framework of evolution multiscale convergence which is a generalization of two-scale convergence to include several spatial and temporal scales. In order to derive the local problems, one for each spatial scale, the crucial concept of very weak evolution multiscale convergence is utilized since it allows less benign sequences to attain a limit. It turns out that the local problems do not involve the dissipative term g even though the homogenized problem does and, due to the nonlinearity property, an important part of the work is to determine the effective dissipative term. A brief illustration of how to use the main homogenization result is provided by applying it to an example problem exhibiting six spatial and eight temporal scales in such a way that a and g have disparate oscillation patterns.
ISSN:1556-1801
1556-181X
DOI:10.3934/nhm.2016012