Enhanced electrical and mechanical properties of nanographite electrodes for supercapacitors by addition of nanofibrillated cellulose

Graphene and porous carbon materials are widely used as electrodes in supercapacitors. In order to form mechanically stable electrodes, binders can be added to the conducting electrode material. However, most binders degrade the electrical performance of the electrodes. Here we show that by using na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi. B: Basic Solid State Physics 2014-12, Vol.251 (12), p.2581-2586
Hauptverfasser: Andres, Britta, Forsberg, Sven, Dahlström, Christina, Blomquist, Nicklas, Olin, Håkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene and porous carbon materials are widely used as electrodes in supercapacitors. In order to form mechanically stable electrodes, binders can be added to the conducting electrode material. However, most binders degrade the electrical performance of the electrodes. Here we show that by using nanofibrillated cellulose (NFC) as a binder the electrical properties, such as capacitance, were enhanced. The highest capacitance was measured at an NFC content of approximately 10 % in ratio to the total amount of active material. The NFC improved the ion transport in the electrodes. Thus, electrodes made of a mixture of nanographite and NFC achieved larger capacitances in supercapacitors than electrodes with nanographite only. In addition to electrical properties, NFC enhanced the mechanical stability and wet strength of the electrodes significantly. Furthermore, NFC stabilized the aqueous nanographite dispersions, which improved the processability. Galvanostatic cycling was performed and an initial transient behaviour of the supercapacitors during the first cycles was observed. However, stabilized supercapacitors showed efficiencies of 98–100%.
ISSN:0370-1972
1521-3951
1521-3951
DOI:10.1002/pssb.201451168