Low-dimensional Cox-Ingersoll-Ross process
The present paper investigates Cox-Ingersoll-Ross (CIR) processes of dimension less than 1, with a focus on obtaining an equation of a new type including local times for the square root of the CIR process. To derive this equation, we utilize the fact that non-negative diffusion processes can be obta...
Gespeichert in:
Veröffentlicht in: | Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2024, p.1-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper investigates Cox-Ingersoll-Ross (CIR) processes of dimension less than 1, with a focus on obtaining an equation of a new type including local times for the square root of the CIR process. To derive this equation, we utilize the fact that non-negative diffusion processes can be obtained by the transformation of time and scale of a certain reflected Brownian motion. The equation mentioned above turns out to contain a term characterized by the local time of the corresponding reflected Brownian motion. Additionally, we establish a new connection between low-dimensional CIR processes and reflected Ornstein-Uhlenbeck (ROU) processes, providing a new representation of Skorokhod reflection functions. |
---|---|
ISSN: | 1744-2508 1744-2516 1744-2516 |
DOI: | 10.1080/17442508.2023.2300291 |