Low-dimensional Cox-Ingersoll-Ross process

The present paper investigates Cox-Ingersoll-Ross (CIR) processes of dimension less than 1, with a focus on obtaining an equation of a new type including local times for the square root of the CIR process. To derive this equation, we utilize the fact that non-negative diffusion processes can be obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2024, p.1-21
Hauptverfasser: Mishura, Yuliya, Pilipenko, Andrey, Yurchenko-Tytarenko, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper investigates Cox-Ingersoll-Ross (CIR) processes of dimension less than 1, with a focus on obtaining an equation of a new type including local times for the square root of the CIR process. To derive this equation, we utilize the fact that non-negative diffusion processes can be obtained by the transformation of time and scale of a certain reflected Brownian motion. The equation mentioned above turns out to contain a term characterized by the local time of the corresponding reflected Brownian motion. Additionally, we establish a new connection between low-dimensional CIR processes and reflected Ornstein-Uhlenbeck (ROU) processes, providing a new representation of Skorokhod reflection functions.
ISSN:1744-2508
1744-2516
1744-2516
DOI:10.1080/17442508.2023.2300291