Admissible Hom-Novikov-Poisson and Hom-Gelfand-Dorfman Color Hom-Algebras

The main feature of color Hom-algebras is that the identities defining the structures are twisted by even linear maps. The purpose of this paper is to introduce and give some constructions of admissible Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras. Their bimodule...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laraiedh, Ismail, Silvestrov, Sergei
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main feature of color Hom-algebras is that the identities defining the structures are twisted by even linear maps. The purpose of this paper is to introduce and give some constructions of admissible Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras. Their bimodules and matched pairs are defined and the relevant properties and theorems are given. Also, the connections between Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras are proved. Furthermore, we show that the class of admissible Hom-Novikov-Poisson color Hom-algebras is closed under tensor product.
ISSN:2194-1009
2194-1017
DOI:10.1007/978-3-031-32009-5_22