Admissible Hom-Novikov-Poisson and Hom-Gelfand-Dorfman Color Hom-Algebras
The main feature of color Hom-algebras is that the identities defining the structures are twisted by even linear maps. The purpose of this paper is to introduce and give some constructions of admissible Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras. Their bimodule...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main feature of color Hom-algebras is that the identities defining the structures are twisted by even linear maps. The purpose of this paper is to introduce and give some constructions of admissible Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras. Their bimodules and matched pairs are defined and the relevant properties and theorems are given. Also, the connections between Hom-Novikov-Poisson color Hom-algebras and Hom-Gelfand-Dorfman color Hom-algebras are proved. Furthermore, we show that the class of admissible Hom-Novikov-Poisson color Hom-algebras is closed under tensor product. |
---|---|
ISSN: | 2194-1009 2194-1017 |
DOI: | 10.1007/978-3-031-32009-5_22 |