Extreme Points of the Vandermonde Determinant and Wishart Ensemble on Symmetric Cones

In this paper Muhumuza, Asaph KeikaraLundengård, KarlMalyarenko, AnatoliySilvestrov, SergeiMango, John MageroKakuba, Godwinwe demonstrate the extreme points of the Wishart joint eigenvalue probability distributions in higher dimension based on the boundary points of the symmetric cones in Jordan alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Muhumuza, Asaph Keikara, Malyarenko, Anatoliy, Lundengård, Karl, Silvestrov, Sergei, Mango, John Magero, Kakuba, Godwin
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper Muhumuza, Asaph KeikaraLundengård, KarlMalyarenko, AnatoliySilvestrov, SergeiMango, John MageroKakuba, Godwinwe demonstrate the extreme points of the Wishart joint eigenvalue probability distributions in higher dimension based on the boundary points of the symmetric cones in Jordan algebras. The extreme points of the Vandermonde determinant are defined to be a set of boundary points of the symmetric cones that occur in both the discrete and continuous part of the Gindikin set. The symmetric cones form a basis for the construction of the degenerate and non-degenerate Wishart ensembles in Herm(m,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Herm}}(m,\mathbb {C})$$\end{document}, Herm(m,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Herm}}(m,\mathbb {H})$$\end{document}, Herm(3,O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Herm}}(3,\mathbb {O})$$\end{document} denotes respectively the Jordan algebra of all Hermitian matrices of size m×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times m$$\end{document} with complex entries, the skew field H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document} of quaternions, and the algebra O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {O}$$\end{document} of octonions.
ISSN:2194-1009
2194-1017
DOI:10.1007/978-3-031-17820-7_27