A Variant of Updating PageRank in Evolving Tree Graphs
A PageRank update refers to the process of computing new PageRank values after a change(s) (addition or removal of links/vertices) has occurred in real‐life networks. In this chapter, the authors focus on updating the scaled adjacency matrix, maintaining levels and calculating the PageRank of a tree...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A PageRank update refers to the process of computing new PageRank values after a change(s) (addition or removal of links/vertices) has occurred in real‐life networks. In this chapter, the authors focus on updating the scaled adjacency matrix, maintaining levels and calculating the PageRank of a tree graph after some changes. They propose a technique for updating transition matrices when an edge is added or removed. The authors present a single vertex update of PageRank when an edge is inserted or removed. They demonstrate that refinement iterative formation of linear systems fits in a single vertex update. The authors then describe how to keep track of levels of vertices in a changing tree graph. |
---|---|
DOI: | 10.1002/9781119821588.ch1 |