A Variant of Updating PageRank in Evolving Tree Graphs

A PageRank update refers to the process of computing new PageRank values after a change(s) (addition or removal of links/vertices) has occurred in real‐life networks. In this chapter, the authors focus on updating the scaled adjacency matrix, maintaining levels and calculating the PageRank of a tree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abola, Benard, Biganda, Pitos Seleka, Engström, Christopher, Mango, John Magero, Kakuba, Godwin, Silvestrov, Sergei
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A PageRank update refers to the process of computing new PageRank values after a change(s) (addition or removal of links/vertices) has occurred in real‐life networks. In this chapter, the authors focus on updating the scaled adjacency matrix, maintaining levels and calculating the PageRank of a tree graph after some changes. They propose a technique for updating transition matrices when an edge is added or removed. The authors present a single vertex update of PageRank when an edge is inserted or removed. They demonstrate that refinement iterative formation of linear systems fits in a single vertex update. The authors then describe how to keep track of levels of vertices in a changing tree graph.
DOI:10.1002/9781119821588.ch1