Generalized Derivations and Rota-Baxter Operators of n-ary Hom-Nambu Superalgebras
The aim of this paper is to generalise the construction of n -ary Hom-Lie bracket by means of an ( n - 2 ) -cochain of given Hom-Lie algebra to super case inducing n -Hom-Lie superalgebras. We study the notion of generalized derivations and Rota-Baxter operators of n -ary Hom-Nambu and n -Hom-Lie su...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2021, Vol.31 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to generalise the construction of
n
-ary Hom-Lie bracket by means of an
(
n
-
2
)
-cochain of given Hom-Lie algebra to super case inducing
n
-Hom-Lie superalgebras. We study the notion of generalized derivations and Rota-Baxter operators of
n
-ary Hom-Nambu and
n
-Hom-Lie superalgebras and their relation with generalized derivations and Rota-Baxter operators of Hom-Lie superalgebras. We also introduce the notion of 3-Hom-pre-Lie superalgebras which is the generalization of 3-Hom-pre-Lie algebras. |
---|---|
ISSN: | 0188-7009 1661-4909 1661-4909 |
DOI: | 10.1007/s00006-020-01115-2 |