3-Hom-Lie Algebras Based on σ-Derivation and Involution
We show that, having a Hom-Lie algebra and an element of its dual vector space that satisfies certain conditions, one can construct a ternary totally skew-symmetric bracket and prove that this ternary bracket satisfies the Hom-Filippov-Jacobi identity, i.e. this ternary bracket determines the struct...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2020, Vol.30 (3), Article 45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, having a Hom-Lie algebra and an element of its dual vector space that satisfies certain conditions, one can construct a ternary totally skew-symmetric bracket and prove that this ternary bracket satisfies the Hom-Filippov-Jacobi identity, i.e. this ternary bracket determines the structure of 3-Hom-Lie algebra on the vector space of a Hom-Lie algebra. Then we apply this construction to two Hom-Lie algebras constructed on an associative, commutative algebra using
σ
-derivation and involution, and we obtain two 3-Hom-Lie algebras. |
---|---|
ISSN: | 0188-7009 1661-4909 1661-4909 |
DOI: | 10.1007/s00006-020-01068-6 |