3-Hom-Lie Algebras Based on σ-Derivation and Involution

We show that, having a Hom-Lie algebra and an element of its dual vector space that satisfies certain conditions, one can construct a ternary totally skew-symmetric bracket and prove that this ternary bracket satisfies the Hom-Filippov-Jacobi identity, i.e. this ternary bracket determines the struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2020, Vol.30 (3), Article 45
Hauptverfasser: Abramov, Viktor, Silvestrov, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, having a Hom-Lie algebra and an element of its dual vector space that satisfies certain conditions, one can construct a ternary totally skew-symmetric bracket and prove that this ternary bracket satisfies the Hom-Filippov-Jacobi identity, i.e. this ternary bracket determines the structure of 3-Hom-Lie algebra on the vector space of a Hom-Lie algebra. Then we apply this construction to two Hom-Lie algebras constructed on an associative, commutative algebra using σ -derivation and involution, and we obtain two 3-Hom-Lie algebras.
ISSN:0188-7009
1661-4909
1661-4909
DOI:10.1007/s00006-020-01068-6