Picosecond level error detection using PCA in the hardware timing systems for the EISCAT_3D LAAR
While developing the timing system for the receiver arrays for the EISCAT_3D system, several approaches to detect and adjust for timing errors within the array have been explored. The demand on the timing error between all elements in the array is to have a standard deviation of less than 120 ps, th...
Gespeichert in:
Veröffentlicht in: | The radio science bulletin 2010 (333), p.45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While developing the timing system for the receiver arrays for the EISCAT_3D system, several approaches to detect and adjust for timing errors within the array have been explored. The demand on the timing error between all elements in the array is to have a standard deviation of less than 120 ps, thus requiring high quality error detection systems to guarantee radar operation. This paper investigates the qualities of a secondary error detection system based on statistical analysis of captured data. The measurements are assembled with a Signal-to-Noise Ratio (SNR) of -30 dB implying that the elements in a 2112 element array need to be grouped into sub-arrays of 48 elements each. The captured data is then evaluated by Principal Component Analysis (PCA) and averaged over 20,000 measurements, or about half a second. Timing errors between sub-arrays of down to ~120 ps and a percentage of faulty sub-arrays of up to 20% are detectable. As a secondary error detection system PCA is cheap to implement since the only need of the analysis is a small amount of computer time. It also provides a valuable detection system for hardware errors in the primary timing system that can otherwise be hard to find. |
---|---|
ISSN: | 1024-4530 |