Quality of Experience in Industrial Internet of Things
Quality of Experience (QoE) is a research domain that measures the ”degree of de-light or annoyance of the users of an application or service”. Today’s research on QoE mainly addresses multimedia services, where the user’s subjective perception is the prime factor of determining the QoE. However, wi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quality of Experience (QoE) is a research domain that measures the ”degree of de-light or annoyance of the users of an application or service”. Today’s research on QoE mainly addresses multimedia services, where the user’s subjective perception is the prime factor of determining the QoE. However, with the proliferation of the Internet of Things (IoT) in industrial services, this thesis argues for extending the conventional QoE defi-nition, architecture, and evaluation methods. Emerging IoT services, such as industrial transportation and manufacturing, are more complex, with different quality requirements than multimedia services. For instance, evaluating the machine-to-machine (M2M) com-munication that enables autonomous operations. Some IoT services closely engage with human lifestyle and privacy; hence, delivering and measuring quality is of utmost impor-tance. Consider a self-driving vehicle, making multiple real-time decisions as a result of automated predictive models. Therein, measuring QoE faces two key challenges. The first challenge is about measuring the QoE of an autonomous service. Traditional QoE is typically measured through subjective tests - an approach that doe not apply to intelli-gent machines. The second challenge is about understanding and measuring the impact of intelligent machines and their autonomous decisions. Quality degradation caused by the machines and M2M communication can affect the business, environment, and even raise life-threatening concerns.This thesis argues for a paradigm shift within the area of QoE in the direction of understanding the relationships between humans and intelligent machines, as well as among the machines. Thus, the main outcome of the thesis is the introduction of Quality of IoT experience (QoIoT), which extends the traditional QoE definition in covering IoT services. Within QoIoT, we consider a quality evaluation from the perspective of users, as well as from intelligent machines. The user’s perception is captured by following the traditional QoE models, while intelligent machines are evaluated throughput objective metrics describing their experiences and performance.As a result of the extended QoE definition, this thesis presents a QoIoT architecture consisting of a methodology and measurable parameters in emerging IoT services. The QoIoT architecture models low-level objective metrics from four layers of the IoT service: physical, network, application, and virtual. Then, the architecture argues for autom |
---|