Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu
C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle...
Gespeichert in:
Veröffentlicht in: | Nature astronomy 2019-11, Vol.3 (11), p.971-976 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle sizes in the centimetre range. This includes observations of C-type asteroid (162173) Ryugu
1
–
3
. However, on arrival of the Hayabusa2 spacecraft at Ryugu, a regolith cover of sand- to pebble-sized particles was found to be absent
4
,
5
(R.J. et al., manuscript in preparation). Rather, the surface is largely covered by cobbles and boulders, seemingly incompatible with the remote-sensing infrared observations. Here we report on in situ thermal infrared observations of a boulder on the C-type asteroid Ryugu. We found that the boulder’s thermal inertia was much lower than anticipated based on laboratory measurements of meteorites, and that a surface covered by such low-conductivity boulders would be consistent with remote-sensing observations. Our results furthermore indicate high boulder porosities as well as a low tensile strength in the few hundred kilopascal range. The predicted low tensile strength confirms the suspected observational bias
6
in our meteorite collections, as such asteroidal material would be too frail to survive atmospheric entry
7
.
The MASCOT lander observed a boulder on the surface of asteroid Ryugu up close. The boulder’s low thermal inertia is closer to fine regolith or comets rather than stony boulders, indicating high porosity and low tensile strength. Orbit measurements confirm that Ryugu’s surface is covered with similar boulders. |
---|---|
ISSN: | 2397-3366 2397-3366 |
DOI: | 10.1038/s41550-019-0832-x |