Personalizing Activity Recognition With a Clustering Based Semi-Population Approach
Smartphone-based approaches for Human Activity Recognition have become prevalent in recent years. Despite the amount of research undertaken in the field, issues such as cross-subject variability are still posing an obstacle to the deployment of solutions in large scale, free-living settings. Persona...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.207794-207804 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Smartphone-based approaches for Human Activity Recognition have become prevalent in recent years. Despite the amount of research undertaken in the field, issues such as cross-subject variability are still posing an obstacle to the deployment of solutions in large scale, free-living settings. Personalized methods ( i.e. aiming to adapt a generic classifier to a specific target user) attempt to solve this problem. The lack of labeled data for training purposes, however, represents a major barrier. This is especially the case when taking into consideration that personalization generally requires labeled data to be user-specific. This paper presents a novel personalization method combining a semi-population based approach with user adaptation. Personalization is achieved through the following. Firstly, the proposed method identifies a subset of users from the available population as best candidates for initializing the classifier to the target user. Subsequently, a semi-population Neural Network classifier is trained using data from this subset of users. The classifier's network weights are then updated using a small amount of labeled data from the target user subsequently implementing personalization. This approach was validated on a large publicly available dataset collected in a free-living scenario. The personalized approach using the proposed method has shown to improve the overall F-score to 74.4% compared to 70.9% when using a generic non-personalized approach. Results obtained, with statistical significance being confirmed on a set of 57 users, indicate that model initialization using the semi-population approach can reduce the amount of labeled data required for personalization. As such, the proposed method for model initialization could facilitate the real-world deployment of systems implementing personalization by reducing the amount of data needed for personalization. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3038084 |