Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing

Mitochondria play an important role in sensing both acute and chronic hypoxia in the pulmonary vasculature, but their primary oxygen-sensing mechanism and contribution to stabilization of the hypoxia-inducible factor (HIF) remains elusive. Alteration of the mitochondrial electron flux and increased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-04, Vol.6 (16), p.eaba0694-eaba0694
Hauptverfasser: Sommer, Natascha, Alebrahimdehkordi, Nasim, Pak, Oleg, Knoepp, Fenja, Strielkov, Ievgen, Scheibe, Susan, Dufour, Eric, Andjelković, Ana, Sydykov, Akylbek, Saraji, Alireza, Petrovic, Aleksandar, Quanz, Karin, Hecker, Matthias, Kumar, Manish, Wahl, Joel, Kraut, Simone, Seeger, Werner, Schermuly, Ralph T, Ghofrani, Hossein A, Ramser, Kerstin, Braun, Thomas, Jacobs, Howard T, Weissmann, Norbert, Szibor, Marten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondria play an important role in sensing both acute and chronic hypoxia in the pulmonary vasculature, but their primary oxygen-sensing mechanism and contribution to stabilization of the hypoxia-inducible factor (HIF) remains elusive. Alteration of the mitochondrial electron flux and increased superoxide release from complex III has been proposed as an essential trigger for hypoxic pulmonary vasoconstriction (HPV). We used mice expressing a tunicate alternative oxidase, AOX, which maintains electron flux when respiratory complexes III and/or IV are inhibited. Respiratory restoration by AOX prevented acute HPV and hypoxic responses of pulmonary arterial smooth muscle cells (PASMC), acute hypoxia-induced redox changes of NADH and cytochrome c, and superoxide production. In contrast, AOX did not affect the development of chronic hypoxia-induced pulmonary hypertension and HIF-1α stabilization. These results indicate that distal inhibition of the mitochondrial electron transport chain in PASMC is an essential initial step for acute but not chronic oxygen sensing.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aba0694