A smoothed finite element method using second-order cone programming
In this paper, a new approach abbreviated as SOCP-SFEM is developed for analysing geomechanical problems in elastoplasticity. The SOCP-SFEM combines a strain smoothing technique with the finite element method (FEM) in second-order cone programming (SOCP) and thereby inherits the advantages of both t...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2020-07, Vol.123, p.103547, Article 103547 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new approach abbreviated as SOCP-SFEM is developed for analysing geomechanical problems in elastoplasticity. The SOCP-SFEM combines a strain smoothing technique with the finite element method (FEM) in second-order cone programming (SOCP) and thereby inherits the advantages of both the smoothed finite element method (SFEM) and the SOCP-FEM. Specifically, the low-order mixed element can be used in the SOCP-SFEM without volumetric locking issues and the singularity associated with some typical constitutive models (e.g. the Mohr-Coulomb model and the Drucker-Prager model) is no longer a problem. In addition, the frictional and the cohesive-frictional interfaces can be implemented straightforward in the developed SOCP-SFEM owing to the adopted mixed variational principle and the smoothing technique. Furthermore, the multiple contact constraints, such as a cohesive interface with tension cut-off which is commonly used for analysing the bearing capacity of a pipeline buried in clays, can be simulated with little extra effort. To verify the correctness and robustness of the developed formulation for SOCP-SFEM, a series of benchmarks are considered where the simulation results are in good agreements with the analytical solutions and the reported numerical results. |
---|---|
ISSN: | 0266-352X 1873-7633 1873-7633 |
DOI: | 10.1016/j.compgeo.2020.103547 |