Finite element analysis of alternative load paths in a platform-framed CLT building

Multi-storey cross-laminated timber (CLT) buildings are a comparatively recent construction type. Knowledge concerning the performance of CLT buildings regarding the prevention of disproportionate collapse after unforeseeable events (e.g. accidents or acts of terrorism) is not as refined as that for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Civil Engineers. Structures and buildings 2020-05, Vol.173 (5), p.379-390
Hauptverfasser: Huber, Johannes A. J., Ekevad, Mats, Girhammar, Ulf Arne, Berg, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-storey cross-laminated timber (CLT) buildings are a comparatively recent construction type. Knowledge concerning the performance of CLT buildings regarding the prevention of disproportionate collapse after unforeseeable events (e.g. accidents or acts of terrorism) is not as refined as that for concrete and steel buildings. In particular, alternative load paths (ALPs) after the removal of a wall panel in platform-framed variants have not yet been studied in detail. The goal of this work was therefore to study ALPs in CLT buildings. An eight-storey bay of an existing building was evaluated by conducting a non-linear static pushdown analysis in a finite element analysis on three representative storeys. The analyses accounted for single fastener behaviour, timber crushing, friction, brittle failure and large deformations. The force–deformation behaviours elicited under the pushdown analyses were subsequently inserted in a simplified dynamic model to evaluate the transient response of the entire bay. Four ALPs were identified in this case – shear resistance in the floor panels, arching action of the walls, catenary action in the floor panels and hanging action from the roof. The dynamic analysis did not show a collapse, unless the inter-compartment stiffness was significantly reduced. The resistance mechanisms are described in this paper, which may provide information for improved building design.
ISSN:0965-0911
1751-7702
1751-7702
DOI:10.1680/jstbu.19.00136