A low cost omnidirectional relative localization sensor for swarm applications

By enabling coordinated task execution and movement, robotic swarms can achieve efficient exploration of unknown environments. In this paper, we propose a relative localization sensor system using Ultra-wideband (UWB) radio technology for ranging. This system is light-weight and relatively indiffere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kohlbacher, Anton, Eliasson, Jens, Acres, Kevin, Chung, Hoam, Barca, Jan Carlo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By enabling coordinated task execution and movement, robotic swarms can achieve efficient exploration of unknown environments. In this paper, we propose a relative localization sensor system using Ultra-wideband (UWB) radio technology for ranging. This system is light-weight and relatively indifferent to the types of surrounding environments. Infrastructure dependency such as the requirement of beacons at known locations is eliminated by making an array of sensors on a swarm agent. In this paper, a novel algorithm is implemented on hardware with limited resources and compared to a more traditional trilateration approach. Both utilize Particle Swarm Optimization (PSO) to be more robust against noise and to achieve similar accuracy. The experimental results show that the proposed algorithm runs up to ten times faster than the existing trilateration approach. The sensor array which forms the localization system weighs only 56g, and achieves around 0.5m RMSE with a 10Hz update rate. Experiments show that the accuracy can be further improved if the rotational bias observed in the UWB devices are compensated for.
DOI:10.1109/WF-IoT.2018.8355093