A strong ice cloud event as seen by a microwave satellite sensor: Simulations and observations

In this article, brightness temperatures observed by channels of the Advanced Microwave Sounding Unit-B (AMSU-B) instrument are compared to those simulated by a radiative transfer model, which can take into account the multiple scattering due to ice particles by using a discrete ordinate iterative s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2008-06, Vol.109 (9), p.1705-1718
Hauptverfasser: Sreerekha, T.R., Buehler, S.A., O’Keeffe, U., Doherty, A., Emde, C., John, V.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, brightness temperatures observed by channels of the Advanced Microwave Sounding Unit-B (AMSU-B) instrument are compared to those simulated by a radiative transfer model, which can take into account the multiple scattering due to ice particles by using a discrete ordinate iterative solution method. The input fields, namely, the pressure, temperature, humidity, and cloud water content are taken from the short range forecast from the Met Office mesoscale model (UKMES). The comparison was made for a case study on the 25 January 2002 when a frontal system associated with significant cloud was present over the UK. It is demonstrated that liquid clouds have maximum impact on channel 16 of AMSU whereas ice clouds have maximum impact on channel 20. The main uncertainty for simulating microwave radiances is the assumptions about microphysical properties, such as size distribution, shape and orientation of the cloud particles, which are not known in the mesoscale model. The article examines the impact of these parameters on the cloud signal. The polarisation signal due to oriented ice particles at these frequencies is also discussed.
ISSN:0022-4073
1879-1352
1879-1352
DOI:10.1016/j.jqsrt.2007.12.023