Prognos av vägars bärförmåga vid tjällossningen: användning av temperatur som nyckeltal

The global trend towards a warmer climate and temperatures near or just above 0 °C during winter months, will most likely be more common in future. One of the consequences of this climate change could, in a worst-case scenario, be freezing and thawing over a significant part of the winter with corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Berglund, Andreas
Format: Dissertation
Sprache:swe
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The global trend towards a warmer climate and temperatures near or just above 0 °C during winter months, will most likely be more common in future. One of the consequences of this climate change could, in a worst-case scenario, be freezing and thawing over a significant part of the winter with corresponding road bearing capacity problems. Bearing capacity problems may lead to increased costs to society when heavy traffic is forced to change route or carry less weight. In addition, road maintenance costs will increase. According to pulp industry calculations, this industry sector will face additional costs in the range of 510-590 Million SEK every year due to road bearing capacity problems. In addition to this, the costs related to the rapidly growing bio fuel industry will be added. If a reliable forecast of load-bearing capacity problems and potential load restrictions on roads can be found, it would be cost effective for road administration and society. This text presents the content of the licentiate work is presented and in what report more information could be found. One aspect of frost damage on roads that is highlighted in the thesis is decision making when conducting a road inventory. In a study conducted within the licentiate work it was shown that the results from different actors performing frost inventory on the same road stretch can vary a lot. There should be efforts made to reduce the individual dependence when performing a road inventory. The main part of the licentiate work deals with a model for the prediction of bearing capacity problems on roads. The work gives an idea of the possibility to use the temperature based model used in Minnesota, USA in Sweden. The evaluation is done by comparing falling weight deflectometer (FWD) test results with the results from the temperature based forecast model. When comparing the FWD results: AREA-parameter and subgrade modulus with results from the Minnesota model, the subgrade modulus seems to have the greatest agreement with the forecast model. However, they both seem to show the overall development of low bearing capacity during thaw. The overall conclusion about the temperature based forecast model is that it seems to give fairly good results and work well. It will work better if it can be further calibrated but it has some flaws if the temperature seesaws around 0 °C. The forecast model should, despite this, be able to assist road holders in Sweden as a planning tool, when dealing with bearing c