Quantification of Ink Diffusion in Microcontact Printing with Self-Assembled Monolayers

Spreading of ink outside the desired printed area is one of the major limitations of microcontact printing (μ-CP) with alkanethiol self-assembled monolayers (SAMs) on gold. We use molecular dynamics (MD) computer simulations to quantify the temperature and concentration dependence of hexadecanethiol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2009-01, Vol.25 (1), p.242-247
Hauptverfasser: Gannon, G, Larsson, J. A, Greer, J. C, Thompson, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spreading of ink outside the desired printed area is one of the major limitations of microcontact printing (μ-CP) with alkanethiol self-assembled monolayers (SAMs) on gold. We use molecular dynamics (MD) computer simulations to quantify the temperature and concentration dependence of hexadecanethiol (HDT) ink spreading on HDT SAMs, modeling 18 distinct printing conditions using periodic simulation cells of ∼7 nm edge length and printing conditions ranging from 7 ink molecules per cell at 270 K to 42 ink molecules per cell at 371K. The computed alkanethiol ink diffusion rates on the SAM are of the same order of magnitude as bulk liquid alkanethiol diffusion rates at all but the lowest ink concentrations and highest temperatures, with up to 20−30 times increases in diffusion rates at the lowest concentration−highest temperature conditions. We show that although alkanethiol surfaces are autophobic, autophobicity is not enough to pin the ink solutions on the SAM, and so any overinking of the SAM will lead to spreading of the printed pattern. Comparison of experimental and calculated diffusion data supports an interpretation of pattern broadening as a mixture of spreading on fully and partially formed SAMs, and the calculated spreading rates establish some of the fundamental limitations of μ-CP in terms of stamp contact time and desired pattern width.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/la802548u