Effects of slide-roll ratio and lubricant properties on elastohydrodynamic lubrication film thickness and traction
Abstract With tribology research aimed at decreasing energy consumption, two factors are inherently in focus: lubricant film thickness and traction. These factors are effectively decoupled and depend on lubricant properties which are sometimes contradictory-favourable for one factor and disadvantage...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part J, Journal of engineering tribology Journal of engineering tribology, 2001-03, Vol.215 (3), p.301-308 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
With tribology research aimed at decreasing energy consumption, two factors are inherently in focus: lubricant film thickness and traction. These factors are effectively decoupled and depend on lubricant properties which are sometimes contradictory-favourable for one factor and disadvantageous for the other. The film thickness ought to be maximized to reduce the number of asperities in contact and thus wear, whilst the traction should be minimized in order to reduce energy losses. In this experimental investigation the tested lubricants were investigated to see whether they possess beneficial properties for forming thick lubricant films under severe operating conditions while maintaining low traction forces. This is done by experimentally studying the film thickness reduction due to thermal and rheological effects for a fully flooded electrohydrodynamic lubrication (EHL) contact. The base oils tested were a naphthenic mineral VG150, a synthetic poly-α-olefin VG68 and a synthetic ester VG46. It was found that the synthetic ester maintained a relatively thicker lubricant film during sliding than the poly-α-olefin and mineral oil. The film thickness reduction for the mineral oil was greater than for the poly-α-olefin. |
---|---|
ISSN: | 1350-6501 2041-305X 2041-305X |
DOI: | 10.1243/1350650011543556 |